
1

IEMS5730 Big Data Systems
and Information Processing

Resource Management Platforms
for

Big Data Processing Systems

Prof. Wing C. Lau
Department of Information Engineering

wclau@ie.cuhk.edu.hk

2

Acknowledgements
¢ The slides used in this chapter are adapted from the following sources:

l “Data-Intensive Information Processing Applications,” by Jimmy Lin, University of
Maryland.

-

l “Intro To Hadoop” in UCBerkeley i291 - Analyzing BigData with Twitter, by Bill Graham,
Twitter.

l Ryza of Cloudera Inc, “Can’t we just get along ?”, Spark Summit, 2013
l Cloudera, “Introduction to YARN and MapReduce 2”, SlideShare.net
l Eric Brewer, Google VP of Instructure, “Google Tech Talk – Containers: What, Why,

How ; Google Cloud Innovation”, April 2015
l Ajit Punj, Juan Manuel Camacho, Borg – a presentation for Stanford CS349d, Fall 2018
l Alex Gilkson of CMU, “Cloud-Native Applications and Kubernetes (k8s), 2019
l Cyberlearn CLOUD 2019-2020 (Master) MSE Lecture notes on Kubernetes

https://cyberlearn.hes-so.ch/course/view.php?id=14014
l Kubernauts – The Cloud Cosmonauts “The Kubernetes Learning Slides,” v0.15.1, June

15, 2020.
https://docs.google.com/presentation/d/13EQKZSQDounPC1I6EC4PmqaRmdCrpT3qswQJz9KRCyE/htmlpresent

l Bob Killen, Cloud Native Computing Foundation (CNCF) Ambassador, “Kubernetes – an
Introduction,” July 2019.
https://docs.google.com/presentation/d/1zrfVlE5r61ZNQrmXKx5gJmBcXnoa_WerHEnTxu5SMco/edit#slide=id.g3cfa019267_4_0

l Alex Gilkson of CMU, “Cloud-Native Applications and Kubernetes (k8s), 2019

¢ All copyrights belong to the original authors of the material.

This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 3.0
United States. See http://creativecommons.org/licenses/by-nc-sa/3.0/us/ for details

3

2/7/23 Jure Leskovec, Stanford CS246: Mining Massive Datasets,
http://cs246.stanford.edu

Hadoop 1.0 vs. Hadoop 2.0 Ecosystem

4

Practical Scalability Limits of Hadoop1.0
v Scalability

v Maximum Cluster Size – 4000 Nodes
v Maximum Concurrent Tasks – 40000
v Coarse synchronization in Job Tracker

v Single point of failure
v Failure kills all queued and running jobs
v Jobs need to be resubmitted by users

v Restart is very tricky due to complex state

5

Scalability/Flexibility Issues of the
MapReduce/ Hadoop 1.0 Job Scheduling/Tracking

¢ The MapReduce Master node (or Job-tracker in Hadoop 1.0)
is responsible to monitor the progress of ALL tasks of all jobs
in the system and launch backup/replacement copies in case
of failures
l For a large cluster with many machines, the number of tasks to be

tracked can be huge
=> Master/Job-Tracker node can become the performance bottleneck

¢ Hadoop 1.0 platform focuses on supporting MapReduce as its
only computational model ; may not fit all applications

¢ Hadoop 2.0 introduces a new resource management/ job-
tracking architecture, YARN [1], to address these problems

[1] V.K. Vavilapalli, A.C.Murthy, “Apache Hadoop YARN: Yet Another Resource Negotiator,”
ACM Symposium on Cloud Computing 2013.

6

YARN for Hadoop 2.0

¢ YARN (Yet Another Resource Negotiator) provides a
resource management platform for Cluster to support
general Distributed/Parallel Applications/Frameworks
beyond the MapReduce computational model.

V. K. Vavilapalli, A. C. Murthy, “Apache Hadoop YARN: Yet Another Resource Negotiator”, in
ACM Symposium on Cloud Computing (SoCC) 2013.

7

A Big Data Processing Stack with YARN

8

Hadoop2.0/YARN Architectural Overview

9

YARN Framework

10

2/7/23 Jure Leskovec, Stanford CS246: Mining Massive Datasets,
http://cs246.stanford.edu

¢ Multiple frameworks (Applications) can run on top of YARN to share a Cluster, e.g.
MapReduce is one framework (Application), MPI, or Storm are other ones.

¢ YARN splits the functions of JobTracker into 2 components: resource allocation
and job-management (e.g. task-tracking/ recovery):
l Upon launching, each Application will have its own Application Master (AM), e.g. MR-AM in the figure

above is the AM for MapReduce, to track its own tasks and perform failure recovery if needed
l Each AM will request resources from the YARN Resource Manager (RM) to launch the Application’s

jobs/tasks (Containers in the figure above) ;
l The YARN RM determines resource allocation across the entire cluster by communicating with/

controlling the Node Managers (NM), one NM per each machine.

Cluster Resource Management w/ YARN in Hadoop2.0

11

YARN Execution Sequence

12

YARN Application Models
¢ Application Master (AM) per Job

l Most simple for batch
l Used by MapReduce (v2)

¢ Application Master per Session
l Runs multiple jobs on behalf of the same user
l Added in Tez ;
l Also for Spark (one AM per SparkContext, w/ Long-

lived enhancement)

¢ AM as permanent service, supporting Multiple
Users
l Always on, waits around for jobs to come in
l Used for Impala (with Llama Adapter to support

separate-user/queue billing of YARN)

13

Example: Running MapReduce (v2) on YARN

¢ Each MapReduce Job has a separate instance of AM

¢ A Separate MapReduce Job History Server to track MR
job history

¢ YARN runs Shuffle as a persistent, auxiliary service

14

15

16

17

18

19

Hadoop 2.0 vs. Hadoop1.0
v Hadoop 2.0 includes YARN’s Multi-tenant Support for different Big Data

Processing Frameworks
v YARN Fault Tolerance and Availability

v Resource Manager
v No single point of failure – state saved in ZooKeeper
v Application Masters are restarted automatically on RM restart

v Application Master
v Optional failover via application-specific checkpoint
v MapReduce applications pick up where they left off via state saved in HDFS

v Wire Compatibility
v Protocols are wire-compatible
v Old clients can talk to new servers
v Rolling upgrades

v Besides YARN, Hadoop 2.0 also supports High Availability and Federation
v High Availability takes away the Single Point of failure from HDFS Namenode and

introduces the concept of the QuorumJournalNodes to sync edit logs between
active and standby Namenodes

v Federation allows multiple independent namespaces (private namespaces, or
Hadoop as a service)

20

Apache Mesos
(http://mesos.apache.org)

httphtt
¢ Another competing Cluster Resource Management platform

¢ Enable multiple frameworks to share same cluster resources
(e.g., MapReduce, Storm, Spark, HBase, etc)

¢ Originated from UCBerkeley’s BDAS project ;
l B. Hindman et al, “Mesos: A Platform for Fine-Grained Resource Sharing in the Data

Center”, Usenix NSDI 2011.

¢ Hardened via Twitter’s large scale in-house deployment
l 6,000+ servers,
l 500+ engineers running jobs on Mesos

¢ Third party Mesos schedulers
l AirBnB’s Chronos ; Twitter’s Aurora

¢ Mesospehere: startup to commercialize Mesos

Mesos
Spark

Spark
Stream. Spark

SQL

BlinkDB
GraphX

MLlib
MLBase

HDFS, S3, …
Tachyon

Motivation of Mesos

Hadoop

Storm

MPI
Shared cluster

Previously: Static partitioning of
a cluster among different big
data processing frameworks

Mesos aims to achieve
dynamic sharing of cluster

across different frameworks

u Hard to fully utilize machines
(e.g., X GB RAM & Y CPUs)

u Hard to scale elastically (to take
advantage of statistical multiplexing)

u Hard to deal with failures

22

Mesos as a Data-Center “Kernel”

¢ Like YARN, Mesos
provides a Node
Abstraction of the
entire Cluster

¢ Like YARN, Mesos
is a common
resource sharing
layer over which
diverse
frameworks can
run

23

System Architecture of Mesos

24

Framework Isolation

¢ Mesos uses OS isolation mechanisms, such as Linux containers
and Solaris projects

¢ Containers currently support CPU, memory, IO and network
bandwidth isolation

¢ Not perfect, but much better than no isolation

25

Mesos’ use of Container Technology

26

Design Elements

¢Fine-grained sharing:
l Allocation at the level of tasks within a job
l Improves utilization, latency, and data locality

¢Resource offers:
l Simple, scalable application-controlled scheduling

mechanism

Element 1: Fine-Grained Sharing

Framework 1

Framework 2

Framework 3

Coarse-Grained Sharing (HPC): Fine-Grained Sharing (Mesos):

+ Improved utilization, responsiveness, data locality

Storage System (e.g. HDFS) Storage System (e.g. HDFS)

Fw. 1

Fw. 1Fw. 3

Fw. 3 Fw. 2Fw. 2

Fw. 2

Fw. 1

Fw. 3

Fw. 2Fw. 3

Fw. 1

Fw. 1 Fw. 2Fw. 2

Fw. 1

Fw. 3 Fw. 3

Fw. 3

Fw. 2

Fw. 2

28

Element 2: Resource Offers
¢Option: Global scheduler

l Frameworks express needs in a specification language, global
scheduler matches them to resources

+ Can make optimal decisions
¢– Complex: language must support all framework
needs

– Difficult to scale and to make robust
– Future frameworks may have unanticipated needs

29

Element 2: Resource Offers
¢Mesos: Resource offers

l Offer available resources to frameworks, let them pick
which resources to use and which tasks to launch

+ Keep Mesos simple, let it support future frameworks

- Decentralized decisions might not be optimal

Mesos Architecture

MPI job

MPI
scheduler

Hadoop job

Hadoop
scheduler

Allocation
module

Mesos
master

Mesos slave
MPI

executor

Mesos slave
MPI

executor

tasktask

Resource
offer

Pick framework to
offer resources to

Mesos Architecture

MPI job

MPI
scheduler

Hadoop job

Hadoop
scheduler

Allocation
module

Mesos
master

Mesos slave
MPI

executor

Mesos slave
MPI

executor

tasktask

Pick framework to
offer resources toResource

offer

Resource offer =
list of (node, availableResources)

E.g. { (node1, <2 CPUs, 4 GB>),
(node2, <3 CPUs, 2 GB>) }

Mesos Architecture

MPI job

MPI
scheduler

Hadoop job

Hadoop
scheduler

Allocation
module

Mesos
master

Mesos slave
MPI

executor
Hadoop
executor

Mesos slave
MPI

executor

tasktask

Pick framework to
offer resources to

task
Framework-specific

scheduling

Resource
offer

Launches and
isolates executors

Another Resource Offering Example

Optimization: Filters

• Let frameworks short-circuit rejection by
providing a predicate on resources to be
offered
»E.g. “nodes from list L” or “nodes with > 8 GB RAM”
»Could generalize to other hints as well

• Ability to reject still ensures correctness when
needs cannot be expressed using filters

Revocation

• Mesos allocation modules can revoke (kill)
tasks to meet organizational SLOs

• Framework given a grace period to clean up

• “Guaranteed share” API lets frameworks
avoid revocation by staying below a certain
share

Scheduler Callbacks

resourceOffer(offerId, offers)
offerRescinded(offerId)
statusUpdate(taskId, status)
slaveLost(slaveId)

Executor Callbacks

launchTask(taskDescriptor)
killTask(taskId)

Executor Actions

sendStatus(taskId, status)

Scheduler Actions

replyToOffer(offerId, tasks)
setNeedsOffers(bool)
setFilters(filters)
getGuaranteedShare()
killTask(taskId)

Mesos API

A Big Data Processing Stack w/ Mesos

Mesos only performs inter-framework scheduling (e.g. fair
sharing), which is easier than intra-framework scheduling

0

0.2

0.4

0.6

0.8

1

-10000 10000 30000 50000

Ta
sk

 S
ta

rt
 O

ve
rh

ea
d

(s
)

Number of Slaves

Result:
Scaled to 50,000
emulated slaves,
200 frameworks,
100K tasks (30s len)

Scalability

Fault Tolerance

• Mesos master has only soft state: list of
currently running frameworks and tasks

• Rebuild when frameworks and slaves re-
register with new master after a failure

Result: fault detection and recovery in ~10 sec

Mesos Implementation Statistics

§ 20,000 lines of C++

§ Master failover using ZooKeeper

§ Frameworks ported: Hadoop1.0, MPI, Storm, etc

§ Specialized framework: Spark, for iterative jobs
(up to 20× faster than Hadoop)

§ Open source under Apache license

Other Schedulers/ Resource Management
Platforms for

Big Data Processing Clusters

42

Approach 1: Centralized Resource Management

A. Verma, L. Pedrosa, “Large-scale cluster management at Google with Borg”, Eurosys 2015

M. Schwarzkopf, A. Konwinski, M.Abd-El-Malek, J. Wilkes, “Omega: flexible, scalable schedulers for large
compute clusters,” Eurosys 2013

43

Design Options for Centralized Resource Management:
Monolithic[Hadoop1.0, YARN] vs.Two-level[Mesos] vs.Shared-state[Omega, Borg]

44

High-level Architecture of Google’s Borg

A. Verma, L. Pedrosa, “Large-scale cluster management at Google with Borg”, Eurosys 2015

45

Borg Architecture - Borgmaster

● Each cell contains a Borgmaster
● Each Borgmaster consists of 2 processes:

○ Main Borgmaster process
○ Scheduler

● Multiple replicas of each Borgmaster
● Role of (elected leader) Borgmaster:

○ submission of job, termination of any of job’s task

46

Borg Architecture - Borglet

● Local Borg agent on every cell
○ starts/stops/restarts tasks
○ Manages local resources
○ Rolls over debug logs

● Polled by Borgmaster to get machine’s current state
● If a Borglet does not respond to several poll

messages, it is marked as down
○ Tasks re-distributed
○ If communication is restored, Borgmaster tells

Borglet to kill rescheduled tasks

47

How does Borg work?

● Users submit “jobs”
○ Each “job” contains 1+ “task” that all run the same

program/binary
○ Runs inside containers (not VMs as it would cost

higher latency)
● Each “job” runs on one “cell”

○ A “cell” is a set of machines that run as one unit

● Two main types of jobs:
○ “Prod” job : long-running server jobs,

higher priority
○ “Non-prod” job : quick batch jobs, lower

priority

48

How does Borg work?

● Allocs:
○ Reserved set of resources in one machine
○ Can run multiple instances of a task, different

tasks from many jobs, or future tasks
● Priority and quota:

○ Each job has a priority
○ Preemption disallowed between “prod” jobs.
○ Quota refers to vector of resource quantities for

period of time
● Support for naming and monitoring

49

Borg Architecture - Scheduling

● Borgmaster adds new jobs to a pending queue after
recording it in the Paxos store

● A scheduler (primarily operates on tasks) scans and
assigns tasks to machines
○ Feasibility checking
○ Scoring

● E-PVM vs “best-fit”
○ E-PVM leaves headroom for load-spikes but has

increased fragmentation
○ Best-fit fills machines as tightly as possible, but

hurts “bursty loads”
● Current model is a hybrid of both

○ Borg will kill lower priority tasks until it finds room
for an assigned task

50

Techniques Borg uses for managing utilization
● Cell-sharing: sharing prod and non-prod tasks

○ Resource reclaiming
○ Not sharing prod and non-prod work would increase

machine needs by 20-30%
● Large cells: to allow large computations and decrease

fragmentation
○ splitting up jobs and distributing them requires significantly

more machines
● Fine-grained resource requests

○ fixed size containers/VMs not ideal
○ instead there are “buckets” of CPU/memory requirements

● Resource reclamation: jobs specify limits
○ Borg can kill tasks that use more RAM or disk space than

requested
○ Throttle CPU usage
○ Prioritize prod tasks over non-prod

51

Borg Architecture - Scalability

● Ultimate scalability limit is unknown

○ Single Borgmaster can manage thousands of
borglets

○ Rates above 10,000 tasks per minute

○ Busy Borgmaster uses 10-14 CPU cores and
50GiB RAM

52

Borg - Achieving Availability

● To mitigate inevitable failures, Borg will:
○ Automatically reschedule evicted tasks
○ Reduce correlated failures by distributing across

failure domains
○ Limits downtime due to maintenance
○ Use “declarative desired-state representations

and idem-potent mutating operations” to ease
resubmission of forgotten requests

○ Avoid task to machine pairings that cause
crashes

○ Use a logsaver to recover critical data written to
a local disk

● Achieve 99.99% availability in practice

53

Isolation
● Security:

○ Linux chroot command used for process
isolation

○ Standard sandboxing techniques used for
running external software

● Performance:
○ Borg makes explicit distinction between

LS (latency-intensive) tasks and batch
tasks. Helps for priority-based
preemption

○ Borg uses notion of compressible
resources (CPU cycles, disk I/O
bandwidth) and non-compressible
resources (RAM, disk space)

54

Why is it important to have isolation, and
how does Borg implement it?
● To protect an app from Noisy, Nosy and

Messy neighbors
● Sharing machines between applications

increases utilization, but isolation is needed
to prevent tasks from interfering
○ Security: rogue tasks can affect other tasks, and information should not be visible

between tasks
○ Performance:

■ Utilization can be decreased by users inflating resource requests to prevent
interference

■ Again, rogue tasks can affect your task

● Security: Linux chroot jail is the primary
security isolation mechanism

● Performance: Linux cgroup-based container
○ Also appclass is used to help with overload and overcommitment
○ High priority LS (latency-sensitive) tasks

55

Approach 2: Distributed Resource Management

K. Ousterhout et al, “Sparrow: Distributed, Low Latency Scheduling”, ACM SOSP 2013

E. Boutin et al, “Apollo: Scalable and Coordinated Scheduling for Cloud-Scale Computing”, Usenix OSDI 2014

56

High-level Distributed Resource Management
Architecture of Microsoft’s Apollo

E. Boutin et al, “Apollo: Scalable and Coordinated Scheduling for Cloud-Scale Computing”, OSDI 2014

57

Centralized vs. Distributed Resource Management

58

Approach 3: Hybrid (Distributed and Centralized)
Resource Management in Microsoft’s Mercury

K. Karanasos et al, “Mercury: Hybrid Centralized and Distributed Scheduling in Large Shared Clusters”,
Usenix ATC 2015

59

Mercury Architecture over YARN

60

Operations and Implementation of Mercury

Resource
Management

Platform for Clusters

Scheduling/Resource Sharing
paradigm Scalability

Multiple Programming
Frameworks/ Multi-

tenant Support

Hadoop 1.0 Centralized Limited but OK No

YARN in Hadoop 2.0 Centralized Good Yes

Mesos
Centralized (Two-level) via

Resource Offers to Individual
Frameworks

Better Yes

Apollo
Distributed and Loosely

Coordinated (via Expected
Resource Wait-Time matrix)

Very Good Yes

Borg, Omega

Centralized per-cell BorgMaster
which allows multiple // schedulers
to performs optimistic-concurrent

allocation followed by checking

Very Good Yes

Mercury

Hybrid
(Centralized and Distributed

scheduling for Big and Small jobs
respectively)

Very Good Yes

Comparisons of Recent Resource Management
Platforms for Clusters

